В каких пределах производится регулировка теплового реле?
Ardenergy.ru

Канализация и водоснабжение

В каких пределах производится регулировка теплового реле?

В каких пределах производится регулировка теплового реле?

Осмотр реле (рис. 6-7). С магнитопровода и сердечника снимается заводская смазка; поверхности прилегания якоря и сердечника протираются чистой тряпкой, смоченной в бензине.

При внешнем осмотре проверяется работа подвижной системы: легкость хода, отсутствие затираний и перекосов. Якорь реле должен легко поворачиваться на острие призмы: поверхности призмы качения якоря должны быть чистыми и гладкими; якорь должен прилегать к сердечнику без зазора; поверхность якоря должна быть ровной, без выступов и кривизны, в противном случае ребра якоря при включении реле могут смять немагнитную прокладку, последняя должна плотно прилегать к якорю и не пружинить.

Проверяется отсутствие затирания подвижной системы при включении якоря от руки; при поджатии якоря к сердечнику витки пружины не должны касаться друг друга, в противном случае необходимо несколько ослабить пружину и одновременно увеличить зазор δ между якорем и сердечником (см. рис. 6-7).

Не допускается зазор между сердечником и ярмом, так как впоследствии при работе это может привести к изменению выдержки времени и быстрому взносу сердечника; катушка не должна иметь следов нарушений поверхностной изоляции и вмятин, контактные выводы катушек должны быть жестко закреплены в поверхностном слое изоляции. Деформированные при транспортировке пли монтаже контактные стойки необходимо выпрямить; подвижные контакты должны касаться неподвижных одновременно, по центру контактов; при наличии нагара на контактах поверхности касания их должны, быть очищены острым лезвием или надфилем; после зачистки контакты протирают чистой ветошью. Смазка не допускается.

Проверка контактной системы. При включении реле вследствие удара якоря об упорный болт возникает небольшая вибрация якоря, при этом замыкаюшие контакты могут отскакивать и повторно разрывать коммутируемую цепь. Для устранения этого явления необходимо иметь некоторый провал на контактном мостике.

Основные параметры контактного устройства – раствор, провал и нажатие контактов – не должны выходить за пределы допустимых и в условиях наладки подлежат тщательной проверке.

Регулировка провалов у реле, имеющих мостиковые контакты (рис. 6-7), производится изменением высоты неподвижных контактов, а раствор определяется ходом якоря. Регулировка провалов и раствора контактов реле серий РЭВ-570, РЭВ-880, РЭВ-200 и РЭВ-800 производится путем перемещения неподвижных контактов. Длярегулировки провала и растворов контактов реле серии РЭВ-570 допускается изменение положения упорного винта, определяющего положение якоря и воздушный зазор между якорем и сердечником, а также подгибанием нажимной скобы.

Регулировка напряжения (тока) срабатывания и возврата. У всех электромагнитных реле постоянного тока серии РЭВ настройка напряжения срабатывания и возврата осуществляется натяжением пружины или изменением воздушного зазора между якорем и сердечником; при этом максимальное первоначальное натяжение пружины лимитируется тем, что при включенном реле ее витки не должны касаться Друг друга, а уменьшение воздушного зазора ограничивается минимальными значениями раствора и провала контактов.

Регулирование коэффициента возврата реле производится изменением толщины немагнитной прокладки. Если необходимо иметь более высокий коэффициент возврата, увеличивают толщину немагнитной прокладки. Тонкая, в небольших пределах регулировка коэффициента возврата может быть выполнена изменением натяжения пружины.

Реле напряжения переменного тока, включенные через добавочные сопротивления, настраиваются натяжением возвратной пружины и зазором якоря. Регулирование напряжения возврата производится только изменением натяжения пружины.

Напряжение втягивания у реле с «залипанием» регулируется изменением раствора якоря, так как в этом случае сохраняется сжатие пружины, а следовательно, и настроенная ранее выдержка времени.

После настройки все реле проверяют в схеме на отсутствие вибрации (гудения) и надежность срабатывания при 80 % номинального напряжения.

Регулировка выдержки времени производится с помощью электрического или электронного секундомера по схемам, приведенным на рис. 6-8. Достаточна точность измерения 0,03-0,05 с. Пределы регулирования выдержки даны в табл. 6-3.

Выдержка времени реле регулируется изменением толщины немагнитной прокладки (грубо) и изменением натяжения пружины (тонко). Самые тонкие стандартные прокладки имеют толщину 0,10-0,15 мм. Прокладки толщиной менее 0,1 мм не применяются, так как при частых включениях реле они могут деформироваться, что ведет к изменению выдержки времени и «залипанию» якоря. «Залипание» может произойти и от чрезмерного ослабления пружины, оттягивающей якорь от сердечника. Для предотвращения «залипания» необходимо возвратную пружину затянуть на полтора-два оборота от того состояния, при котором произошло «залипание».

У реле времени серий РЭВ-80, РЭВ-800 и РЭВ-880 регулировка выдержки времени производится как изменением толщины немагнитной прокладки, так и натяжением отжимной пружины на якоре. Возвратная пружина служит только для обеспечения четкого отпадания якоря и необходимого провала размыкающихся контактов. У реле серий РЭВ-800, РЭВ-880 и др. время «заряда» (задержки) в зависимости от исполнения находится в пределах 0.35-1,5 с, поэтому для получения полной выдержки времени и правильного ее измерения необходимо, чтобы катушка перед срабатыванием (отключением, закорачиванием) была под напряжением (обтекалась током) за период, больший времени «заряда» или в крайнем случае равный ему.

Выдержка времени электромагнитных реле при отпадании якоря может регулироваться изменением съемных дополнительных демпферов. Чем больше индуктивность катушки (или гильзы) и чем меньше ее омическое сопротивление, а также натяжение пружины, тем больше выдержка времени.

Проверка времени срабатывания производится при напряжении 0,85 UH. Учитывая, что с нагревом катушки выдержка времени реле уменьшается, регулировать рапе при холодной катушке необходимо на несколько большую выдержку времени, чем заданная уставка.

Проверка реле защиты постоянного тока первичным током производится от сети постоянного или переменного тока или от специально выделяемых генераторов в режиме короткого замыкания.

При уставках реле на ток 5-20 А ток срабатывания регулируют с помощью реостатов, включенных последовательно с катушкой согласно рис. 6-9. Для настройки токовых реле до 10 А удобно использовать полупроводниковые выпрямители (схема приведена на рис. 6-10).

Реле на большие токи (до 200 А) проверяют, применяя нагрузочный трансформатор с выпрямителями ВК-200 по схеме, показанной на рис. 6-11.

Для испытания токовых реле защиты установок, работающих по схеме Г-Д, в качестве испытательного можно использовать рабочий генератор, схема возбуждения которого изменяется так, чтобы обеспечить плавный подъем тока с нуля. Для этих целей параллельная обмотка генератора включается через потенциометр от независимого источника постоянного тока (рис. 6-12).

Когда отсутствуют регуляторы тока, указанные выше, настройку токовых реле можно выполнить с помощью эталонной катушки, например катушки напряжения, имеющей большое и точно известное количество витков. Эталонная катушка устанавливается вместо токовой, и реле настраивают на новый ток I‘ исходя из следующего соотношения:

где Iуст– требующийся ток уставки реле; ωэ, ωT – соответственно число витков эталонной и токовой катушек.

Проверка реле переменного тока первичным током в зависимости от тока уставки производится от сети, если ток уставки до 100 А, или от постороннего источника переменного тока, если ток уставки более 100 А.

При проверке токовых реле от рабочей сети ток нагрузки создается с помощью резисторов, включенных последовательно с катушкой реле. В качестве токоограничивающих сопротивлений могут быть использованы реостаты или ящики резисторов. Регулирование тока в схеме осуществляется шунтированием части резисторов (рис. 6-13).

Для проверки максимальных защит на большие токи (сотни и тысячи ампер) применяют нагрузочные трансформаторы. Трансформатор типа НТ-10, изготовляемый ВНИИПЭМ, позволяет получить нагрузочный ток до 10 000 А. Грубая регулировка тока осуществляется изменением коэффициента трансформации, тонкая (плавная) – с помощью регулировочных устройств (рис. 6-14). Вместо специального нагрузочного можно использовать котельные или сварочные трансформаторы.

Настройка максимальных реле производится в следующем порядке. Ток нагрузки с помощью регулировочного устройства (реостата, ЛАТР) поднимается до тока уставки. При подгонке тока нагрузки к току уставки испытательная схема кратковременно отключается для остывания испытуемого реле, нагрузочных и регулировочных устройств и включается снова. Нагрузочный ток устанавливается равным току уставки и изменением натяжения пружины или положения упора якоря реле доводится до срабатывания. После окончания настройки реле на шкале отмечается риска, указывающая уставку, а положение затягивающей гайки фиксируется шплинтом.

Нов-электро

Профессиональный сайт для энергетиков

Проверка, регулировка и настройка тепловых реле типа ТРН, ТРП

Очень часто приходится встречать в электрохозяйствах в качестве максимальной токовой защиты электротепловые реле типов ТРН, ТРП. Подробно об этих реле я уже писал ранее. Однако, в данных реле необходимо периодически проводить настройку и регулировку уставок срабатывания. Именно об этом сегодня и поговорим.

Перед проверкой и регулировкой тепловых реле необходимо:

– произвести ревизию тепловых реле;

– создать необходимые температурные условия (не ниже +20 о С) в помещении, где они установлены. В случае невозможности создания нормальных температурных условий в помещении, где установлены тепловые реле, проверку данных реле необходимо проводить в лабораторных условиях.

Произвести внешний осмотр тепловых реле. При осмотре проверяют:

Читать еще:  Как утеплить водяную трубу в земле?

1) надежность затяжки контактов, присоединения тепловых элементов;

2) исправное состояние нагревательных элементов, состояние биметаллических пластин;

3) четкость работы механизма, связанного с контактами реле и самих контактов, отсутствие заеданий, задержек;

4) чистоту контактов и биметаллических пластин, условия охлаждения реле;

5) отсутствие вблизи реле реостатов, нагревательных приборов, возможность обдувания от вентиляторов.

При регулировке необходимо учитывать, что тепловые элементы на заводе изготовителе калибруются при температуре 20 о ± 5 о С для тепловых реле серии ТРН и при температуре 40 о С для тепловых реле серии ТРП, поэтому при испытании реле необходимо скорректировать подаваемый на реле номинальный ток с учетом окружающей температуры.

Реле серии ТРН – двухполюсные с температурной компенсацией, выпускаются на ток 0,32 – 40 А с регулятором тока уставки; для реле типа ТРН-10а в пределах от –20 до +25%, для реле ТРН-10, ТРН-25 – в пределах от –25 до +30%.

Реле имеют только ручной возврат, осуществляемый нажатием на кнопку через 1 – 2 мин. после срабатывания реле. Благодаря температурной компенсации ток уставки практически не зависит от температуры воздуха и может изменяться в пределах +3% на каждые 10 о С изменения температуры окружающего воздуха от +20 о С.

Реле серии ТРП – однофазные, без температурной компенсации, выпускаются на ток 1-600 А, с регулятором тока уставки. Механизм имеет шкалу, на которой нанесено по пять делений в обе стороны от нуля.

Цена деления 5% для открытого исполнения и 5,5% – для защищенного. При температуре окружающей среды +30 о С вносится поправка в пределах шкалы реле: одно деление шкалы соответствует изменению температуры на 10 о С. При отрицательных температурах стабильность защиты нарушается.

Деление шкалы, соответствующее току защищаемого электродвигателя и окружающей температуре, выбирают следующим образом; определяется деление шкалы уставок тока без температурной поправки по выражению:

где: Iэл – номинальный ток электродвигателя, А;

Io – ток нулевой уставки реле, А;

с – цена деления, равная 0,05 для открытых пускателей и 0,055 – для защищенных.

Затем, для реле без температурной компенсации вводится поправка на окружающую температуру:

где: tокр – температура окружающей среды, о С.

Поправка на температуру вводится только при понижении температуры от номинальной (+40 о С) на величину более 10 о С.

Результирующее расчетное деление шкалы ±N=(±N1)+(±N2), если оказывается дробным числом, его следует округлить до целого в большую или меньшую сторону, в зависимости от характера нагрузки.

Для реле с температурной компенсацией N2 отсутствует.

Самовозврат реле осуществляется пружиной после остывания биметалла или вручную (ускоренный возврат) рычагом с кнопкой.

Согласно требованиям ГОСТов настройка тепловых реле серии ТРН и ТРП производиться следующим образом:

1. Для включения реле в главную цепь должны применяться медные или алюминиевые проводники длиной не менее 1,5 м с сечением, соответствующим номинальному току. Применяемые приборы должны быть классом не ниже 1,0 и подбираются так, чтобы значение измеряемой величины находилось в пределах от 20 до 35 о шкалы прибора.

2. Проверяют срабатывание реле при нагреве с холодного состояния при 6-и кратном номинальном токе уставки теплового реле.

Время срабатывания реле при нагреве с холодного состояния 6-и кратным номинальному току несрабатывания реле, при любом положении регулятора уставки и температуре окружающего воздуха, равной 40 о С – для реле без температурной компенсации и 20 о С – для реле с температурной компенсацией должно быть в пределах: от 0,5 до 4 секунд – для реле малой инертности, свыше 4 до 25 секунд – для реле большой инерционности.

Примечание:

Время срабатывания реле (каждого типа) должно указываться в стандартах или ТУ на данное изделие.

3. Через последовательно включенные полюса реле пропускают ток несрабатывания элементов, равный 1,05*Iном. двигателя в течении 40 минут для реле ТРН, 50 минут – для реле серии ТРП, для приведения реле в установившееся тепловое состояние.

4. Затем, ток повышают до 1,2Iном двигателя и проверяют время срабатывания. Реле должно сработать в течении 20 минут. Если через 20 минут со времени повышения тока реле не сработает, то следует постепенным снижением уставки найти такой положение, при котором реле сработает.

Для контроля полученной уставки испытание рекомендуется повторить.

Сдача тепловых реле после проверки.

Данные настройки должны заноситься в протокол с указанием:

– технические данные защищаемого оборудования;

– кратность тока прогрузки;

– время срабатывания теплового реле.

На механизме регулировки тока уставки наносится красной краской метка, соответствующая рабочей уставке теплового реле, согласно вышеуказанного протокола.

Регулировка и настройка тепловых реле и расцепителей автоматических выключателей

Основным средством защиты электроприводов от перегрузок в настоящее время являются тепловые реле, а также автоматические выключатели с тепловыми расцепителями. Наибольшее распространение получили двухполюсные реле типа ТРН и ТРП, а также трехполюсные — РТЛ, РТТ. Последние имеют улучшенные характеристики и обеспечивают защиту от несимметричных режимов.

При 20 % перегрузке тепловое реле должно отключать электродвигатель за время не более 20 мин, а при двукратной перегрузке – примерно за 2 мин. Однако это требование часто не выполняется по той причине, что номинальный ток нагревательного элемента теплового реле не соответствует номинальному току защищаемого электродвигателя. На работу тепловых реле существенное влияние оказывает температура окружающей среды.

Основным параметром тепловых реле является время-токовая защитная характеристика, т. е. зависимость времени срабатывания от величины перегрузки.

Первая из них – для реле, находящегося в холодном состоянии (разогрев током начинается, когда реле имеет температуру, равную температуре окружающей среды), и вторая – для реле, находящегося в горячем состоянии (режим перегрузки наступает после работы реле в течение 30 – 40 мин под номинальным током).

Рис. 1. Защитные характеристики теплового реле: 1 – зона срабатывания из холодного состояния, 2 – зона срабатывания из горячего состояния

Для обеспечения надежного и своевременного отключения электродвигателя при перегрузке тепловое реле должно настраиваться на специальном стенде. При этом исключается ошибка из-за естественного разброса номинальных токов заводских нагревательных элементов.

При проверке и настройке тепловой защиты на стенде используется так называемый метод фиктивных нагрузок. Через нагревательный элемент пропускают ток пониженного напряжения, имитируя таким образом реальную нагрузку, и по секундомеру определяют время срабатывания. В процессе настройки необходимо стремиться к тому, чтобы 5. 6-кратный ток отключался через 9 – 10 с, а 1,5-кратный через 150 с (при холодном состоянии нагревателя).

Для настройки тепловых реле можно использовать серийно выпускавшиеся cпециализированные стенды.

На рис. 2 показана схема такого устройства. Приспособление состоит из маломощного нагрузочного трансформатора TV2, к вторичной обмотке которого подключается нагревательный элемент теплового реле КК, а напряжение первичной обмотки плавно регулируется автотрансформатором TV1 (например ЛАТР-2). Ток нагрузки контролируется амперметром РА, включенным во вторичную цепь через трансформатор тока.

Рис. 2. Принципиальная схема установки для проверки и настройки тепловых реле

Тепловое реле проверяют следующим образом. Ручку автотрансформатора устанавливают в нулевое положение и подают напряжение, затем поворотом ручки устанавливают ток нагрузки I = 1,5 I ном и секундомером контролируют время срабатывания реле (в момент погасания лампы HL). Операцию повторяют для остальных нагревательных элементов реле.

Если время срабатывания хотя бы одного из них не соответствует норме, тепловое реле следует отрегулировать. Регулировка производится специальным регулировочным винтом. При этом добиваются, чтобы при токе I = 1,5 I ном время срабатывания составляло 145 – 150 с.

Отрегулированное тепловое реле следует настроить на номинальный ток двигателя и температуру окружающей среды. Это делают в том случае, когда номинальный ток нагревательного элемента отличается от номинального тока электродвигателя (на практике в основном так и бывает) и когда температура окружающего воздуха ниже номинальной ( + 40° С) более чем на 10° С. Токовую уставку реле можно регулировать в пределах 0,75 – 1,25 номинального тока нагревателя. Настройка производится в следующей последовательности.

1. Определяют поправку (E1) реле на номинальный ток двигателя без температурной компенсации ±Е1 = ( I ном- I о)/С I о,

где Iном – номинальный ток двигателя, I о – ток нулевой уставки реле, С — цена деления эксцентрика (С = 0,05 для открытых пускателей и С = 0,055 для защищенных).

2. Определяют поправку на температуру окружающей среды E2=(t – 30)/10,

где t — температура окружающей среды, °С.

3. Определяют суммарную поправку ±Е=(±Е1) + (-Е2).

При дробной величине Е ее следует округлить до целого в большую или меньшую сторону в зависимости от характера нагрузки.

4. На полученное значение поправки переводят эксцентрик теплового реле.

Тщательно отрегулированные тепловые реле типа ТРН и ТРП имеют защитные характеристики, мало отличающиеся от средних. Однако такие реле не обеспечивают защиту электродвигателя в случае заклинивания, а также электродвигателей, не запустившихся при обрыве фазы.

Читать еще:  Система подпитки водяного отопления

Помимо магнитных пускателей c тепловыми реле в электроприводах для нечастых пусков их и защиты электрических цепей от коротких замыканий используются автоматические выключатели. При наличии комбинированных расцепителей такие аппараты защищают электроприемники также от перегрузки. Характерные параметры автоматических выключателей: минимальный ток срабатывания – (1,1. 1,6) I ном, уставка электромагнитного расцепителя – (3 – 15) I ном, время срабатывания при токе I = 16 I ном – менее 1 с.

Испытание тепловых элементов расцепителей автоматов проводят аналогично проверке тепловых реле. Испытание выполняется током 2 I ном при температуре окружающей среды +25° С. Время срабатывания элемента (35 – 100 с) должно находиться в пределах, указанных в заводской документации или найденных по защитной характеристике каждого автомата. Настройка тепловых элементов заключается в установке при помощи винтов биметаллических пластинок на одинаковое время срабатывания при одинаковом токе.

Для проверки электромагнитного расцепителя автоматического выключателя через него от нагрузочного устройства пропускают ток на 15% меньше тока уставки (тока отсечки). Затем плавно увеличивают испытательный ток до отключения аппарата. При этом максимальное значение тока срабатывания не должно превышать ток уставки электромагнитного расцепителя более чем на 15 %. Испытание проводится не более 5 с во избежание недопустимого перегрева контактов выключателя.

Для проверки расцепителя минимального напряжения на зажимы автоматического выключателя подают напряжение U = 0,8Uном и включают аппарат, затем напряжение плавно понижают до момента срабатывания Uc = (0,35 – 0,7)Uном.

В последнее время в промышленности стали использовать полупроводниковые аппараты защиты и управления. Вместо обычных магнитных пускателей, например, применяют специальные тиристорные блоки. Техническое обслуживание таких устройств заключается в периодических внешних осмотрах и проверке работоспособности.

Тепловое реле. Устройство, принцип действия, схема включения теплового реле.

Чтобы правильно защитить электродвигатели от аварийных режимов, необходимо знать основные причины их отказов. Основные аварийные режимы возникают из-за:

• обрыва фазы (ОФ) – 40-50 %;

• заторможения ротора (ЗР) – 20-25 %;

• технологических перегрузок (ТП) – 8-10 %;

• понижения сопротивления изоляции (ПСИ) – 10-15 %;

• нарушения охлаждения (НО) – 8-10 %.

Вероятность срабатывания некоторых устройств защиты, применяемых в сельском хозяйстве, от основных аварийных режимов электродвигателей приведена в таблице 1.1.

Как видно из таблицы 1.1, для защиты электродвигателей от технологических перегрузок, а также от обрыва фазы и заторможения ротора с успехом могут быть использованы тепловые реле, которые работают в сочетании с магнитным пускателем.

Для защиты электрооборудования от перегрузки по току широкое применение нашли тепловые реле типов РТ, ТРН, ТРП, РТЭ, РТТ, РТЛ, РТЛ.У.

Тепловые реле типа ТРН сняты с производства, одно еще достаточное количество их эксплуатируется в сельском хозяйстве.

Тепловое реле состоит из биметаллической пластинки, нагревательного элемента, контактов с пружиной и защелкой (рис. 1.1).

Таблица 1.1 Вероятность срабатывания некоторых устройств защиты в зависимости от аварийных режимов работы электродвигателей

Автоматические выключатели АП-50

Устройства встроенной тепловой защиты (УВТЗ-5)

Устройства защитного отключения по току утечки (УЗО)

Биметаллическая пластина состоит из двух металлов, прочно сваренных между собой по всей поверхности и имеющих различные температурные коэффициенты линейного расширения а. Один металл (инвар) имеет малый коэффициент линейного расширения и называется пассивным. Другой (хромоникелевая сталь) имеет большой коэффициент а и называется активным. При нагревании активный слой стремится удлиниться на большую величину, чем пассивный и, как следствие этого, возникает изгибающий момент.

Рис. 1.1. Конструктивная схема теплового реле типа ТРП: 1 – биметаллическая пластина; 2 – нагревательный элемент; ограничивающие выступы; 4 – пружина; 5 – неподвижный контакт; 6 – прыгающий контакт

Рис. 1.2. Тепловое реле ТРП: 1 – биметаллическая пластинка; 2 – упор самовозврата; 3 – держатель подвижного контакта; 4 – пружина; 5 – подвижный контакт; 6 – неподвижный контакт; 7 – сменный нагреватель; 8 – регулятор тока уставки; 9 – кнопка ручного возврата

Реле серии ТРП на токи 1-600 А в основном используется в магнитных пускателях серии ПА и имеет комбинированную систему нагрева. Исключение – реле ТРП-600 (рис. 1.2).

Биметаллическая пластина 1 нагревается как за счет прохождения через нее тока, так и за счет нагревателя 7. При прогибе конец биметаллической пластины воздействует на прыгающий подвижный контакт 5. Реле допускает плавную ручную регулировку тока срабатывания в пределах ± 25 % номинального тока уставки. Эта регулировка осуществляется ручкой 8, меняющей первоначальную деформацию биметаллической пластины. Возврат реле в исходное положение после срабатывания производится кнопкой 9. Возможно исполнение и с самовозвратом после остывания биметалла. Высокая температура срабатывания (выше 200 °С) уменьшает зависимость работы реле от температуры окружающей среды.

Реле серии РТ являются аппаратами открытого исполнения с косвенной системой нагрева. Регулирование тока срабатывания реле РТ в небольших пределах осуществляется с помощью рычага, перемещение которого изменяет ход конца биметаллической пластины при нагревании до освобождения защелки. Более широкое регулирование тока срабатывания осуществляется заменой нагревательных элементов. Имеется 56 номеров нагревательных элементов на 0,64-40 А.

Реле ТРВ служит для защиты двигателей с легкими условиями пуска, выпускается 20-ти исполнений на токи до 200 А.

Реле серии ТРН выпускаются на токи 0,5-40 А с термокомпенсацией. Используются в основном в магнитных пускателях серии ПМЕ и ПА, имеют косвенный нагрев с помощью пластинчатых ни- хромовых нагревателей.

На рисунке 1.3 приведена конструктивная схема теплового реле ТРН, предназначенного для магнитных пускателей типов ПМЕ и ПМА (табл. 1.2). Биметаллическая пластина 2 при прохождении тока, превышающего заданный, изгибается и перемещает вправо пластмассовый толкатель 11, связанный жестко с биметаллической пластиной 3, выполняющей роль температурного компенсатора. Отклоняясь вправо, пластина 3 нажимает на защелку 8 и выводит ее из зацепления с пластмассовым движком 5 уставок, в результате чего под действием пружины 10 пластмассовая штанга 7 расцепителя отходит кверху (показана пунктиром) и размыкает контакты 9 в цепи управления магнитным пускателем. Движок уставок можно перемещать, поворачивая эксцентрик 4 и изменяя расстояние между концами пластины 3 и защелкой 8, а значит, и ток срабатывания реле.

Температурная компенсация заключается в том, что изгибанию биметаллической пластины 2 при изменении окружающей среды соответствует противоположное по направлению изгибание пластины компенсатора 3. Таким образом достигается независимость тока уставки от окружающей температуры. Ток уставки можно менять в пределах от 0,75 до 1,3 номинального тока нагревательного элемента.

Рис. 1.3. Конструктивная схема теплового реле типа ТРН: 1 – нагревательный элемент; 2 – биметаллическая пластина; 3 – биметаллическая пластина температурного компенсатора; 4 – эксцентрик; 5 – движок уставки; 6 – кнопка «Возврат»; 7 – штанга расцепителя (тяга); 8 – защелка; 9 – контакты; 10 – пружина; 11 – толкатель

Таблица 1.2 Значения номинальных токов сменных нагревательных элементов тепловых реле типа ТРН и ТРП

Максимальное значение Iн нагрузки (А)

Iн сменных нагревательных элементов, А

0,31; 0,4; 0,5; 0,63; 0,8; 1,1; 1,25; 1,6; 2,0; 2,5; 3,2

0,5; 0,63; 0,8; 1,0; 1,25; 1,6; 2; 2,5; 3,2; 4,5; 6,3; 8; 10

5; 6,3; 8; 10; 12,5; 16; 20; 25

12,5; 16; 20; 25; 32; 40

1; 1,2; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 15; 20

20; 25; 30; 40; 50; 60

В сельском хозяйстве находят применение более совершенные трехполюсные тепловые реле типов РТЛ (табл. 1.3) и РТТ (табл. 1.4).

Таблица 1.3 Диапазоны регулировок и максимальные значения номинальных токов (1н) реле типа РТЛ

Максималь­ное значение Iн при t окр.среды +40 оС, А

Диапазон регулиро­вок Iн, А

Максималь­ное значение Iн при t окр.среды +40 оС, А

Виды и конструкции тепловых реле, расчет и выбор теплового реле для защиты двигателя

Тепловое реле выполняет функцию защиты от затяжных перегрузок, их работа похожа на работу теплового разъединителя в автоматических выключателей. В зависимости от величины перегрузки (отклонению от номинального режима – I/Iн) оно срабатывает через соответствующий промежуток времени, который можно вычислить по время-токовой характеристике теплового реле. Давайте подробно рассмотрим, что такое тепловое реле и как его правильно выбрать.

Назначение и принцип работы

При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле.

Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.

Тепловое реле реагирует на возросший ток, и в зависимости от его величины разорвет цепь питания через какое-то время, тем самым сохранив обмотки двигателя целыми. После последующего устранения неисправности, при условии исправности статора, двигатель может продолжить работу.

Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка.

Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.

Время, через которое сработает реле, определяется по время-токовой характеристики конкретного реле, в общем виде она выглядит так:

По вертикальной оси расположено время в секундах, через которое контакты разорвут цепь, а по горизонтальной – во сколько раз фактический ток превышает номинальный. Здесь мы видим, что при номинальном токе реле время работы реле стремится к бесконечности, при перегрузке уже в 1.2 раза оно разомкнется примерно за 5000 секунд, при перегрузке по току в 2 раза – за 500 секунд, при перегрузке в 5-8 раз реле сработает за 10 секунд.

Такая защита исключает постоянные отключения двигателя при кратковременных перегрузках и рывках, но спасают оборудование при длительном выходе за пределы допустимых режимов.

Принцип работы

В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения.

Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание.

Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Когда ток протекает через нагревательный элемент (1), его температура растёт, когда ток достигает установленного тока перегрузки биметаллическая пластина(2) деформируется. Толкатель (10) перемещается вправо и толкает пластину температурного компенсатора (3). Когда ток перегрузки достигнут, она выгибается вправо и выводит из зацепления защелку (7). Штанга расцепителя (6) поднимается вверх и контакты (8) размыкаются.

Виды тепловых реле

Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.

РТЛ – подходит для использования с пускателями типа ПМЛ. С набором клемм КРЛ используется как самостоятельный прибор защиты.

РТТ – подходит для монтажа с пускателями ПМЕ и ПМА. Также может использоваться как самостоятельное, если его смонтировать на специальную панель.

РТИ – тепловые реле для пускателей КМИ и КМТ. На лицевой вы можете видеть пару дополнительных блок-контактов, для реализации схем индикации и прочего.

ТРН – двухфазное тепловое реле. Устанавливается в трёхфазных двигателях, при этом подключается в разрыв двух фаз. Температура окружающей среды не влияет на его работу. На регуляторе тока есть 10 делений 5 на уменьшение, 5 на увеличение, цена одного деления – 5%.

На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию.

Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле.

К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.

Красная кнопка «test» нужна для пробного отключения реле, и проверки возможности размыкания контактов.

Такой способ подключения позволяет экономить место на дин рейке.

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем.

Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН.

Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2.

Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт. Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ.

На реле РТИ эти контакты размещены на передней панели:

NO – нормально-открытый – на индикацию;

NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Полная информация содержится на его шильдике, который вы видите на фото ниже.

Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть:

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

РТЛ-1007, с токовым диапазоном 1.5-2.6 А;

РТЛ-1008, токовый диапазон 2,4-4 А;

РТИ-1307, токовый диапазон 1,6. 2,5 А;

РТИ-1308, токовый диапазон 2,5. 4 А;

ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн – номинальный ток нагрузки электродвигателя, Iнэ – номинальный ток нагревательного элемента теплового реле, с – коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

где Т – температура окружающей среды, °С.

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Проверка

Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:

1. Проверить состояние корпуса, нет ли на нем трещин или сколов.

2. Проверить при подключенной нагрузке с номинальным током.

3. Разобрать реле и проверить целостность контактов, остутствие на них нагара,

4. Проверить, не согнуты ли нагреватели.

5. Проверить расстояние между биметаллом и нагревательными элементами. Оно должно быть одинаковым, если нет, то отрегулировать с помощью крепежных винтов.

6. Подать номинальный ток через один из нагревателей, установить уставку в 1.5 раза больше номинального тока. В таком состоянии реле работает 145 с, затем постепенно поворачивают эксентрик регулировки в положение «-5», до срабатывания реле.

7. После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.

Схема проверочного стенда:

Краткое резюме

Тепловые реле – важный элемент в защите электрооборудования. С его помощью вы защитите своё устройство от перегрузок, а его характеристики позволят переносить кратковременные скачки тока без ложных срабатываний, чего не может обеспечить автоматический выключатель.

Реле могут использоваться как вместе с магнитными пускателями соединяясь с его выходными клеммами напрямую, тем самым образуя единую конструкцию, так и в качестве самостоятельных защитных устройств, размещаться в щитке на дин рейке и в электрошкафах.

Ссылка на основную публикацию
Adblock
detector