Буферная емкость для теплового насоса
Ardenergy.ru

Канализация и водоснабжение

Буферная емкость для теплового насоса

Что такое буферная емкость системы отопления?

По сути, буферные емкости для отопления представляют собой большой термос – металлический бидон с утепленными стенками. В системе отопления буферная емкость располагается между нагревательным прибором и тепловым контуром, и нагретая вода поступает первоначально в нее, а из нее – дальше в коллекторы, радиаторы и теплые полы.

Зачем нужна такая «прослойка»? Все дело в режиме работы нагревательных устройств (котлов). Вода в них нагревается путем сжигания топлива. Есть типы котлов, где топливо может подаваться и сжигаться равномерно (например, газовые котлы, котлы на пеллетах, снабженные бункером и шнеком для подачи). А есть котлы, где это невозможно теоретически (например, котлы на твердом топливе), либо котлы, где постоянное сгорание приводит к снижению КПД котла и повышенному износу топки (газогенераторные котлы), либо где постоянный нагрев стоит очень дорого (электрические котлы). Возьмем твердотопливные котлы. Они дешевы в установке и обслуживании, но у них есть одна проблема: если не подкладывать регулярно топливо, вода в отопительном контуре может быстро остыть. Что делать? Бегать и днем и ночью «подкинуть дровишек», или мерзнуть? Вот здесь и выручит буферная емкость. Нагретая вода поступает в нее, и постепенно расходуется на отопление. Применение буферной емкости в несколько раз увеличивает интервалы между топками котла и, соответственно, во столько же снижает расход топлива.

В случае с электрическим котлом буферную емкость полезно ставить чисто по экономическим соображениям. Известно, что электрокотел потребляет много электричества. Существуют дневной и ночной тарифы на потребленную электроэнергию, которые отличаются друг от друга в разы. Установка буферной емкости позволяет рассчитать режим работы котла так, чтобы он грел только в ночное время.

Европейский опыт применения буферных емкостей доказал его экономическую целесообразность. Кроме того, буферная емкость служит целям безопасности, снижая риск перегрева теплоносителя. Единственный минус буферной емкости – ее большой объем. Для установки системы отопления с применением буферной емкости необходимо помещение размером от 5 кв.м. Емкости большого объема нужно монтировать, разбирая крышу, либо сваривать прямо на месте (они просто не пройдут в двери).

Как рассчитывается объем буферной емкости

Как рассчитать буферную емкость, чтобы достичь желаемого уровня комфорта и при этом не делать огромные баки? Вообще, расчет буферной емкости при устройстве новой системы отопления – дело довольно сложное. Лучше, если это будет делать специалист теплотехник. Сначала на основании информации о площади дома, высоте потолков, материалов стен и перекрытий, рассчитываются теплопотери дома при определенной температуре наружного воздуха (обычно она выражается в «кВт в час»). Затем при помощи специальной формулы рассчитывается количество необходимого теплоносителя (воды), которая должна проходить по системе отопления за час для покрытия теплопотерь при максимально низкой температуре (например, при -25С). Это количество умножается на желаемое время между топками котла, и получается объем буферной емкости.

Гораздо проще производить расчет буферной емкости, если система отопления уже существует. В этом случае количество воды в системе и время между топками уже известно. Стоит только умножить существующий объем теплоносителя на желаемое время увеличения промежутков между топками, и вы получите нужный объем бачка. На практике известно, что при мощности котла 25-32 кВт и дома в 100-150 кв.м. буферной емкости в 1000л достаточно для топки 1 раз в сутки.

Буферные емкости TESY

EV 200 60 F40 TP3 EV 300 65 F41 TP3 EV 500 75 F42 TP3 ЕV 800 99 F43 P4
Буферная емкость 200 л. Буферная емкость 300 л. Буферная емкость 500 л. Буферная емкость 800 л.
ЕV 1000 105 F44 P4 ЕV 1500 120 F45 TP2 ЕV 2000 130 F46 TP2 V 200 60 F40 TP4
Буферная емкость 1000 л. Буферная емкость 1500 л. Буферная емкость 2000 л. Буферная емкость для нагревательной установки 200 л.
V 300 65 F41 TP4 V 400 75 F42 P4 V 500 75 F42 TP4 V 800 99 F43 P4
Буферная емкость для нагревательной установки 300 л. Буферная емкость для нагревательной установки 400 л. Буферная емкость для нагревательной установки 500 л. Буферная емкость для нагревательной установки 800 л.
V 1000 105 F44 P4 V 1500 120 F45 TP4 V 2000 130 F46 TP4 V 11S 400 75 F42 P5
Буферная емкость для нагревательной установки 1000 л. Буферная емкость для нагревательной установки 1500 л. Буферная емкость для нагревательной установки 2000 л. Буферная емкость для нагревательной установки с одним змеевиком 400 л.
V 15S 500 75 F42 P5 V 12S 800 99 F43 P5 V 13S 1000 105 F44 P5 V 12S 1500 120 F45 P5
Буферная емкость для нагревательной установки с одним змеевиком 500 л. Буферная емкость для нагревательной установки с одним змеевиком 800 л. Буферная емкость для нагревательной установки с одним змеевиком 1000 л. Буферная емкость для нагревательной установки с одним змеевиком 1500 л.
V 15S 2000 130 F46 P5
Буферная емкость для нагревательной установки с одним змеевиком 2000 л.

Дополнительная информация, консультации, цены

Мы предложим эффективное и экономичное решение. Воспользуйтесь опытом наших технических специалистов – заполните форму справа, или позвоните.

Отдел геотермального оборудования

    (495) 229-85-86 (многоканальный)

  • (495) 956-7100
    234-0183
    (499) 265-2890
    265-3180 (доб. 508 )

  • Руководитель направления:
    Михайлов Александр
    моб. +7 (926) 205-05-43

    Ведущий специалист
    Чермонов Алмаз
    +7 (495) 229-85-86 (доб. 244)

    Буферная ёмкость для теплового насоса

    В силу специфики режимов работы, отопительные системы с применением теплового насоса должны отвечать определенным требования по минимальному расходу и объему теплоносителя. Кроме того, для тепловых насосов типа воздух/вода должно быть запасено достаточное количество тепла для режима разморозки испарителя.

    Для выполнения этих условий возможны два варианта реализации системы холодо-тепло снабжения с тепловым насосом:

    • Система имеет достаточный объем теплоносителя без применения регулировочной арматуры (термоголовки, или клапаны расхода)
    • Наличие буферной ёмкости для теплового насоса

    «Прямая система» — без применения буферной ёмкости

    Наименее затратным будет вариант теплонасосной системы без установки буферной ёмкости, так называемая «прямая система». Такой вариант подойдет, если в качестве отопительных приборов применяются только системы теплых полов (теплых стен) с большой емкостью отопительной воды.

    Система без применения буферной ёмкости

    Однако существует одно условие — в такой системе не должны присутствовать термоголовки, регуляторы протока и т.д., а наличие перепускного клапана обязательно.

    Такая отопительная система требует детального и сложного проектирования по гидравлике, поскольку все контуры теплого пола должны быть равны между собой по сопротивлению. Трубы подачи и обратки в отопительных контурах должны быть точно рассчитаны для обеспечения минимального требуемого протока теплоносителя в соответствии с параметрами теплового насоса.

    Кроме того, в системах с воздушными тепловыми насосами могут возникать нехватки тепла при включении режима разморозки испарителя. Это, в свою очередь, может приводить к снижению комфорта.

    Установка буферной емкости с тепловым насосом

    В более сложных системах отопления с различными отопительными приборами и наличием смесительных клапанов, регуляторов протока и термоголовками следует устанавливать буферную ёмкость. Установка бака может являться одним из требований производителя для уменьшения количество пусков компрессора.

    Схема с параллельным подключением буферного бака

    Большинство систем реализуются с параллельно подключенным буферным баком. Объем буфера рассчитывается относительно мощности теплового насоса. Многие производители указывает в технической документации, что минимальный объем ёмкости должен быть не менее 25 литров на 1 кВт мощности теплового насоса.

    Параллельное подключение буфера

    Подключение буферной ёмкости решает основные проблемы, связанные с интеграцией теплового насоса в системе отопления. Однако у такой схемы есть один существенный недостаток, связанный с необходимостью поддержания постоянной температуры в буфере. При этом возникают нежелательные тепловые потери, что может привести к снижению эффективности теплового насоса на 5%.

    Комбинированная схема подключения теплового насоса и буферного бака

    Наиболее оптимальным вариантом является применение схемы сочетающей в себе преимущества прямой системы и системы с буферной ёмкостью. Такое решение позволяет предотвратить излишние тепловые потери в буфере, в то же время сокращает количество пусков компрессора. В таком случае буфер служит для накопления избыточного тепла от теплового насоса и обеспечивает достаточным количеством тепла для функции разморозки для воздушного теплового насоса.

    Комбинированное подключение буферной ёмкости

    Важно чтобы диаметр трубы между буферным баком и тепловым насосом был больше чем в системе отопления а суммарный поток теплоносителя в отопительных контурах не превышал поток между буферной ёмкостью и тепловым насосом. Эта схема наиболее подходит там, где тепловой насос является основным источником тепла.

    Схема с последовательно подключённым буферным баком

    Схема с установкой буферного бака в контур отопления последовательно обычно используется в сочетании с воздушным тепловым насосом.

    Последовательное включение буфера

    Такая схема не требует установки дополнительного датчика температуры в буфере. В таком случае буфер выполняет функцию аккумулятора тепла для обеспечения работы функции разморозки без потери комфорта в отапливаемом помещении.

    Сергей Маринец

    Автор – инженер по возобновляемым источникам энергии

    Расчет теплоаккумулятора для теплового насоса

    Теплоаккумулятор (по-другому буферная емкость) часто используется в системе с твердотопливным котлом и тепловым насосом. Он значительно расширяет возможности системы, позволяя экономить гораздо больше денег на топливе. Но чтобы он правильно функционировал и работал по максимуму, нужно верно рассчитать объем теплоаккумулятора. Давайте сейчас этим и займемся.

    Зачем устанавливать буферную емкость в систему теплового насоса?

    Теплоаккумулятор – это устройство, чаще всего выполненное в форме бака, которое накапливает в себе излишки тепла. Накопленное тепло хранится в буферной емкости до тех пор, пока не понадобится использовать его. Эти ситуации возникают, когда источник тепла, например котел, перестает функционировать или снижает количество выполняемой работы.

    Отопительные системы, в которых предусмотрен монтаж теплового насоса, отвечают определенным требованиям. Сейчас нас интересует требования по минимальному расходу и объему теплоносителя. А помогает соблюдать вышеуказанное требование как раз буферная емкость, для которой важно правильно рассчитать объем. Помимо этого теплоаккумулятор выполняет следующие функции:

    • повышает КПД (коэффициент полезного действия) теплонасоса;
    • позволяет использовать сразу несколько теплогенераторов, например от солнечного коллектора и от теплового насоса;
    • позволяет направлять тепло сразу на несколько целей, например теплый пол, радиаторы и так далее;
    • если встроить ГВС в теплоаккумулятор – дом можно обеспечить горячей чистой водой;
    • выравнивает давление;
    • удаляет лишний воздух из теплоносителя.

    К тому же не стоит забывать о том, что периодически активизируется режим разморозки испарителя в тепловых насосах. В таких ситуациях ему требуется некоторое количество тепла, которое может запасти в себе буферная емкость. Это еще одна причина в копилку, почему следует установить буферную емкость.

    Плюсы использования с тепловым насосом

    • Уменьшает количество пусков компрессора;
    • сохраняет максимальное количество энергии от каждой выработки тепла;
    • позволяет накапливать тепло ночью (в это время электричество дешевле), а использовать его днем, тем самым можно экономить деньги на электроэнергии;
    • обеспечивает тепловой насос энергией для разморозки;
    • предусмотрен автоматизированный контроль безопасности;
    • запрограммирована функция поэтажного регулирования уровня тепла или на несколько зданий, например баню и дом.

    Минусы использования с тепловым насосом

    • размер теплоаккумулятора (емкость на 500 литров обладает диаметром 650 мм, а высотой 1900 мм);
    • цена (она легко отбивается за несколько месяцев использования прибора);
    • трудность монтажа (если вы в этом не разбираетесь, потребуется вызывать специалиста).

    Как подобрать теплоаккумулятор для теплонасоса?

    Правильный подбор буферной емкости обеспечит длительный срок эксплуатации и предотвратит тактование компрессора. В первую очередь следует обращать внимание на объем. Инженеры рекомендуют брать из соотношения 40 литров буферной емкости на 1 кВт теплогенератора. Например, на 10 кВт следует брать 400 литров объема.

    Тепловую мощность, которую способен накопить теплоаккумулятор (измеряется в ваттах), рассчитывают по достаточно простой формуле: Q = m * cp * (T2 — T1), где:

    • Q – тепловая мощность (Вт);
    • m – масса вещества в буферной емкости (кг);
    • cp – удельная теплоемкость вещества в теплоносителе (Дж/кг*С);
    • T2 – конечная средняя температура носителя (°C);
    • T1 – начальная средняя температура носителя (°C).

    Если вам интересно, на какое количество времени будет хватать тепла от буферной емкости, рекомендуем воспользоваться следующей формулой: t = Q/теплопотери. Q берется из расчета в предыдущей формуле, а теплопотери зависят от количества потребляемого тепла в вашем доме.

    На примере все будет гораздо проще. Допустим, m = 1000 кг, T2 = 70 °C, T1 = 35 °C. В качестве вещества мы будем использовать воду, а значит, cp = 4200 Дж/кг*С. Тогда Q = 1000 * 4200 * (70 — 35) = 147 МДж. Если перевести это значение в кВт, получится 40,8 кВт.

    Теперь давайте посчитаем, на сколько времени хватит накопленного тепла. Допустим, площадь отапливаемой территории составляет 200 м 2 . Тогда в среднем буферная емкость будет терять 10 кВт*ч (это примерная цифра). Тогда t = 40,8/10 = 4 часа и примерно 5–6 минут.

    Теперь просто вам нужно методом подбора рассчитать необходимый объем теплоаккумулятора. Сразу хотелось бы указать, что если вместо воды вы используете антифриз, то cp = 3800 Дж/кг*С. Эти формулы достаточно просты, но если возникли трудности, можете позвонить нам, менеджер ответит на все вопросы и поможет вам.

    Резюмируя

    При выборе буферной емкости крайне важно правильно рассчитать ее емкость. От этого будет зависеть срок эксплуатации всей системы, КПД и ее эффективность. Вы в любой момент можете написать или позвонить в нашу компанию. Наши менеджеры помогут и ответят на все ваши вопросы. Мы будем рады сотрудничать с вами.

    Как рассчитать теплоаккумулятор для твердотопливного котла и выполнить его обвязку

    Использование аккумуляторов тепла для системы отопления позволяет оптимизировать сжигание твердых видов топлива в котлах. Простыми словами, при наличии буферной емкости – теплоаккумулятора домовладельцу не нужно часто посещать котельную, а дрова будут сгорать в оптимальном режиме. Но для этого емкость нужно правильно подобрать, а потом и состыковать с отопительным оборудованием, что обязательно вызовет затруднения у несведущего человека. Поэтому стоит подробно разобраться, что собой представляет теплоаккумулятор для твердотопливного котла, как его подобрать и подключить к отоплению частного дома.

    Что такое буферная емкость

    На самом деле теплоаккумулятор, предназначенный для системы отопления, — это обычный металлический бак расчетной вместительности, укрытый теплоизоляционным слоем. В простейших моделях заводского изготовления есть только патрубки для подключения теплоносителя, да гильзы под установку термометров. В буферных емкостях подороже термометры уже встроены, а самые дорогие изделия оснащаются теплообменниками в виде змеевиков. Устройство такого теплоаккумулятора показано на рисунке:

    Как видно, конструкция буферной емкости не отличается особой сложностью, оттого разные мастера — умельцы приспособились ее делать своими руками, о чем рассказано в отдельной теме.

    Назначение змеевиков – подогрев воды для обеспечения ГВС и присоединение альтернативных источников тепловой энергии – солнечных коллекторов. Понятно, что данная функция востребована лишь при благоприятных погодных условиях в регионе проживания. В целом же буферная емкость для котла отопления призвана решать такие задачи:

    1. Создание условий для работы ТТ-котла с максимальным КПД и минимальными выбросами в атмосферу.
    2. Комфортная эксплуатация теплогенератора, когда не нужно подбрасывать дрова в топку каждые 4—6 часов, включая ночное время.
    3. Подогрев и подача воды питьевого качества 1—2 потребителям (опция).

    Большинство производителей отопительного оборудования, работающего на твердом топливе, в прилагающейся документации указывают, что крайне желательно выполнить подключение к ТТ-котлу теплоаккумулятора. Причина такова: агрегат достигает наибольшей эффективности при режиме работы, близком к максимальному. А поскольку излишек вырабатываемого тепла нужно куда-то поместить до подачи в систему отопления, понадобится буферная емкость с водой.

    Не имея термоаккумулятора, мы стараемся всячески «придушить» тепловой агрегат, ограничивая подачу воздуха для горения. Мало того что это снижает его КПД до 40% (как у буржуйки), но и вызывает выброс в атмосферу токсичного угарного газа. Из-за этого часть европейских стран запретили сжигание древесины и угля в котлах отопления без буферной емкости.

    С более редкими посещениями помещения топочной все понятно: накопленное в баке тепло еще долгое время будет расходоваться на обогрев дома при условии, что его объем правильно рассчитан. Кроме того, при совместной работе твердотопливного котла в паре с теплоаккумулятором вероятность перегрева и закипания воды в рубашке агрегата сводится практически к нулю.

    Помимо взаимодействия с дровяными теплогенераторами, можно использовать теплоаккумуляторы и с электрическими котлами. Это имеет смысл, когда ночью потребляемая электроэнергия считается по тарифу, что в 2—3 раза ниже обычного. За промежуток времени, пока действует этот тариф, электроустановка сможет полностью «зарядить» тепловой аккумулятор, а он станет отдавать эту энергию на обогрев дома в течение дня.

    При таком варианте результаты предыдущего расчета мощности электрического котла придется удвоить, чтобы его теплоотдачи хватило на обогрев дома и загрузку бака по ночному тарифу.

    Расчет буферной емкости

    Основной критерий, по которому выбирается буферная емкость для твердотопливного котла, — это ее объем, определяемый расчетом. Его величина зависит от таких факторов:

    • тепловая нагрузка на отопительную систему частного дома;
    • мощность котла отопления;
    • предполагаемая длительность работы без помощи источника тепла.

    Перед тем как рассчитать вместительность теплоаккумулятора, нужно прояснить все перечисленные моменты, начиная со средней тепловой мощности, что потребляет система в течение зимнего периода. Максимальную мощность принимать для расчета не следует, это приведет к увеличению размеров бака, а значит, и к повышению стоимости изделия. Лучше несколько дней в году претерпеть неудобства и загружать топку чаще, нежели платить сумасшедшую цену за большой теплоаккумулятор, который будет использоваться нерационально. Да и места он займет слишком много.

    Мнение эксперта. Для обеспечения тепловой энергией дома площадью 200 м² достаточно буферной емкости, вмещающей 1 т теплоносителя, а это объем 1 м³. Утверждение верно для средней полосы Российской Федерации, в более южных или северных регионах расклад будет другим.

    Невозможна нормальная работа системы отопления с теплоаккумулятором, когда источник тепла имеет малый запас по мощности. В этом случае «зарядить» батарею полностью не удастся никогда, поскольку теплогенератор должен одновременно обогревать дом и загружать емкость. Помните, что подбор твердотопливного котла для обвязки с теплоаккумулятором предполагает двукратный запас по тепловой мощности.

    Алгоритм расчета предлагается изучить на примере дома площадью 200 м² при длительности простоя котла 8 часов. Предполагается, что вода в баке нагреется до 90 °С, а в процессе работы отопления остынет до 40 °С. Для обогрева такой площади в наиболее холодное время понадобится 20 кВт теплоты, а среднее ее потребление составит около 10 кВт/ч. Значит, батарея должна накопить 10 кВт/ч х 8 ч = 80 кВт энергии. Дальше расчет объема теплоаккумулятора для твердотопливного котла ведется через формулу теплоемкости воды:

    m = Q / 1.163 х Δt, где:

    • Q – расчетное количество тепловой энергии, которое надо накопить, Вт;
    • m – масса воды в резервуаре, кг;
    • Δt – разница между начальной и конечной температурами теплоносителя в баке, равна 90 – 40 = 50 °С;
    • 163 Вт/кг °С или 4.187 кДж/ кг °С – удельная теплоемкость воды.

    Для рассматриваемого примера масса воды в теплоаккумуляторе составит:

    m = 80000 / 1.163 х 50 = 1375 кг или 1.4 м³.

    Как видите, в результате вычислений размеры буферной емкости выходят больше, чем рекомендует эксперт. Причина проста: для расчета были взяты неточные исходные данные. На практике, особенно когда дом хорошо утеплен, средний расход теплоты на площадь 200 м² будет меньше, чем 10 кВт/ч. Отсюда вывод: чтобы правильно рассчитать размеры теплоаккумулятора для твердотопливного котла, необходимо использовать более точные исходные данные по потреблению тепла.

    Для справки. Существует и укрупненный способ расчета, согласно которому на каждый кВт тепловой мощности котла приходится 25 л объема теплоаккумулятора.

    Подбор теплоаккумулятора

    Остальные критерии выбора емкости не столь важны и в основном касаются разных опций. Одна из них – встроенный змеевик, нагревающий воду для хозяйственных нужд. Может оказаться полезной, если нет других средств подогрева, но для больших расходов в сети ГВС этот способ точно не подойдет. Кроме того, теплообменник отнимет часть «заряда» теплоаккумулятора, уменьшив время автономной работы отопления.

    Полезная опция – встроенный в верхнюю часть бака ТЭН, способный поддерживать температуру теплоносителя на определенном уровне. Благодаря электрическому подогреву система не разморозится в случае аварии и даже сможет обогревать дом какое-то время после того, как аккумулятор «разрядился», а котел еще не запущен.

    Второй змеевик для подключения гелиосистемы полезен лишь в южных регионах, где солнечная активность позволит загрузить теплоаккумулятор. А вот на что стоит обратить внимание при подборе, так это рабочее давление резервуара. Надо учитывать, что большинство твердотопливных котлов рассчитано на давление в рубашке до 3 Бар, значит, и буферная емкость должна спокойно выдерживать столько же.

    Схемы подключения

    Способов обвязки котла твердотопливного с теплоаккумулятором и системой отопления существует немало. Но все они производные от базовой схемы, изображенной ниже. С ее помощью легко разобраться, как эти агрегаты работают в паре, а после все смонтировать своими руками.

    Источник тепла, работающий на твердом топливе, имеет традиционный котловой контур со смесительным узлом, чья задача – не допустить подачу холодного теплоносителя в котел. Затем подающий и обратный трубопроводы подключены к буферной емкости, соответственно, сверху и снизу. Таким же образом к теплоаккумулятору присоединяется система отопления, тоже оснащенная узлом смешивания. Его цель – поддерживать в системе требуемую температуру воды, подмешивая часть горячего теплоносителя при необходимости.

    Важный момент. Фактическая производительность циркуляционного насоса котлового контура должна быть немного выше, чем у насосного агрегата отопительной сети. Соблюдение этого условия позволит потокам внутри теплоаккумулятора двигаться в правильном направлении (показаны на схеме белыми стрелками).

    На самом деле сетевой насос будет мощнее котлового и вот почему. Сопротивление сети трубопроводов и радиаторов выше, нежели 3—5 м трубы от твердотопливного котла до теплоаккумулятора. Более высокая мощность и напор нужны агрегату, чтобы преодолеть это сопротивление. Поэтому более слабый насос котлового контура сможет обеспечить больший расход, надо только верно настроить оба агрегата. Есть 2 варианта решения вопроса:

    1. При использовании 3-скоростных насосов можно настроить их производительность переключением скоростей.
    2. Поставить на входе обратки из системы в буферную емкость балансировочный вентиль, которым и производить регулировку.

    Одновременный прогрев отопительных приборов и послойная загрузка теплоаккумулятора возможна, когда потоки внутри бака движутся по горизонтали с небольшим преобладанием со стороны твердотопливного котла. Возникает вопрос – как это проверить? Возникает ответ: на обеих вводах обратки в бак надо поставить термометры (как на схеме) и выполнять регулировку, переключая скорости насосов или вращая балансировочный вентиль. Важное условие: трехходовой клапан отопительной сети нужно полностью открыть вручную.

    Регулировкой необходимо добиться, чтобы температура на входе в теплоаккумулятор (Т1) была меньше, чем на его выходе (Т2). Это означает, что часть горячей воды идет на «зарядку» батареи. Подробнее обо всех моментах вы сможете узнать от эксперта, просмотрев видео:

    Емкости для теплового насоса буферные в Москве

    Теплоаккумулятор (буферная емкость) Hajdu AQ PT 1000 с.

    Буферная емкость Sunsystem PS 200

    Буферная ёмкость Drazice NADO 300/20 v6

    Буферный накопитель Drazice NAD 1000 v2 без теплоизоляц.

    Буферная емкость для системы отопления Hajdu PT CF – 50.

    Теплоаккумулятор S-Tank серии HFWT -750

    Буферная емкость PR1000 I с одним теплообменником и изо.

    Теплоаккумулятор Hajdu AQ PT 500 без теплообменника

    Буферная емкость для системы отопления Hajdu AQ PT – 10.

    Теплоаккумулятор S-Tank серии АТ PRESTIGE -1000

    Теплоаккумулятор S-Tank серии АТ AT-300

    Буферная ёмкость Hajdu AQ PT 1000 C2 без изоляции

    Буферная емкость с теплообменником Sunsystem PR 800

    Теплонакопитель Nibe BU 100-8

    Буферная ёмкость Drazice NADO 300/20 v6

    Бак-накопитель теплового насоса Electrolux ESVMT-SF-HP-.

    Буферная емкость с теплообменником Sunsystem PR 1000

    Буферный накопитель SUNSYSTEM P 300

    тепловой насос FAIRLAND AHP13AS

    Теплоаккумулятор S-Tank серии АТ AT-1000

    Буферный накопитель HAJDU PT 1000

    Буферная емкость SUNSYSTEM P 1000

    Буферная емкость Sunsystem P 1000

    Буферная емкость Drazice NAD 750 v2

    Буферная ёмкость AQ PT 500 без изоляции

    Теплоизоляция Drazice для буферной емкости NAD 1000 v2

    Буферная емкость для системы отопления Hajdu PT CF – 75.

    Бак-накопитель теплового насоса Electrolux ESVMT-SF-HP-.

    Буферная ёмкость AQ PT 1000 без изоляции

    Буферная емкость для системы отопления Hajdu PT CF – 10.

    Буферный накопитель SUNSYSTEM PR2 500

    тепловой насос FAIRLAND IPHC35

    Буферная емкость Vaillant allSTOR plus VPS 800/3-5

    тепловой насос Brilix XHPFD 100

    тепловой насос Mountfield BP-50WS-C

    Теплоаккумулятор Drazice серии NAD 500 V2

    Буферная емкость Hajdu PT – 300л.

    Теплоаккумулятор Hajdu серии AQ PT6 500 без изоляции

    Теплонакопитель HAJDU AQ PT6 1000

    Буферная емкость Austria Email PSR 1000

    Буферная емкость S-TANK AT 300 л

    Буферная емкость для системы отопления Hajdu PT С – 100.

    Буферная емкость Drazice NAD 500 v2

    Буферная емкость OSO 50R 100

    Теплоаккумулятор S-Tank серии HFWT DUO -300

    Теплоаккумулятор (буферная емкость) Hajdu AQ PT 500 с и.

    Теплоаккумулятор Hajdu PT 300 буферный накопитель

    Буферная ёмкость Hajdu AQ PT 750 без изоляции

    Буферная ёмкость NADO 1000/200 v1

    Теплоаккумулятор Hajdu AQ PT 750

    тепловой насос Mountfield BP-120HS

    Теплоаккумулятор S-Tank серии АТ PRESTIGE -500

    Теплоаккумулятор S-Tank серии HFWT DUO -300

    Читать еще:  Площадь обогрева одной секции алюминиевого радиатора
    Ссылка на основную публикацию
    Adblock
    detector