Обогрев погреба термостат
Ardenergy.ru

Канализация и водоснабжение

Обогрев погреба термостат

Терморегулятор для погреба своими руками

Выбор датчика для терморегулятора

Терморегулятор в быту применяется в самых разных устройствах, начиная от холодильника и заканчивая утюгами и паяльниками. Наверно, нет такого радиолюбителя, который обошел бы стороной подобную схему. Чаще всего в качестве датчика или сенсора температуры в различных любительских конструкциях используются терморезисторы, транзисторы или диоды. Работа таких терморегуляторов достаточно проста, алгоритм работы примитивный, и как следствие простая электрическая схема.

Поддержание заданной температуры производится включением – выключением нагревательного элемента (ТЭН): как только температура достигнет заданной величины, срабатывает сравнивающее устройство (компаратор) и ТЭН отключается. Такой принцип регулирования реализован во всех простых регуляторах. Казалось бы, все просто и понятно, но это лишь до того, пока не дошло до практических опытов.

Самым сложным и трудоемким процессом в изготовлении «простых» терморегуляторов является настройка на требуемую температуру. Для определения характерных точек температурной шкалы предлагается сначала погружать датчик в сосуд с тающим льдом (это ноль градусов Цельсия), а затем в кипяток (100 градусов).

После этой «калибровки» методом проб и ошибок при помощи градусника и вольтметра производится настойка необходимой температуры срабатывания. После таких опытов результат оказывается не самым лучшим.

Сейчас различными фирмами выпускается множество температурных сенсоров уже откалиброванных в процессе производства. В основном это датчики, рассчитанные на работу с микроконтроллерами. Информация на выходе этих датчиков цифровая, передается по однопроводному двунаправленному интерфейсу 1-wire, что позволяет создавать целые сети на базе подобных устройств. Другими словами очень просто создать многоточечный термометр, контролировать температуру, например, в помещении и за окном, и даже не в одной комнате.

На фоне такого изобилия интеллектуальных цифровых сенсоров неплохо выглядит скромный прибор LM335 и его разновидности 235, 135. Первая цифра в маркировке говорит о назначении прибора: 1 соответствует военной приемке, 2 индустриальное применение, а тройка говорит об использовании компонента в бытовых приборах.

Кстати, такая же стройная система обозначений свойственна многим импортным деталям, например операционным усилителям, компараторам и многим другим. Отечественным аналогом таких обозначений была маркировка транзисторов, например, 2Т и КТ. Первые предназначались для военных, а вторые для широкого применения. Но пора вернуться к уже знакомому нам LM335.

Внешне этот сенсор похож на маломощный транзистор в пластмассовом корпусе ТО – 92, но внутри него находится 16 транзисторов. Также этот датчик может быть и в корпусе SO – 8, но различий между ними нет никаких. Внешний вид датчика показан на рисунке 1.

Рисунок 1. Внешний вид датчика LM335

По принципу действия датчик LM335 представляет собой стабилитрон, у которого напряжение стабилизации зависит от температуры. При повышении температуры на один градус Кельвина напряжение стабилизации увеличивается на 10 милливольт. Типовая схема включения показана на рисунке 2.

Рисунок 2. Типовая схема включения датчика LM335

При взгляде на этот рисунок сразу можно спросить, какое же сопротивление резистора R1 и, какое напряжение питания при такой схеме включения. Ответ содержится в технической документации, где сказано, что нормальная работа изделия гарантируется в диапазоне токов 0,45…5,00 миллиампер. Следует заметить, что предел в 5 мА превышать не следует, поскольку датчик будет перегреваться и измерять собственную температуру.

Что будет показывать датчик LM335

Согласно документации (Data Sheet) датчик проградуирован по абсолютной шкале Кельвина. Если предположить, что температура внутри помещения -273,15°C, а это абсолютный ноль по Кельвину, то рассматриваемый датчик должен показать нулевое напряжение. При увеличении температуры на каждый градус выходное напряжение стабилитрона будет возрастать на целых 10мВ или на 0,010В.

Чтобы перевести температуру из привычной всем шкалы Цельсия в шкалу Кельвина достаточно просто прибавить 273,15. Ну, про 0,15 всегда и все забывают, поэтому просто 273, и получается, что 0°C это 0+273 = 273°K.

В учебниках физики нормальной температурой считается 25°C, а по Кельвину получается 25+273 = 298, а точнее 298,15. Именно эта точка упоминается в даташите, как единственная точка калибровки сенсора. Таким образом, при температуре 25°C на выходе датчика должно быть 298,15 * 0,010 = 2,9815В.

Рабочий диапазон датчика находится в пределах -40…100°C и во всем диапазоне характеристика датчика очень линейна, что позволяет легко рассчитать показания датчика при любой температуре: сначала надо пересчитать температуру по Цельсию в градусы Кельвина. Затем полученную температуру умножить на 0,010В. Последний ноль в этом числе говорит о том, что напряжение в Вольтах указано с точностью до 1мВ.

Все эти рассуждения и расчеты должны навести на мысль, что при изготовлении терморегулятора не придется ничего градуировать, макая сенсор в кипяток и в тающий лед. Достаточно просто рассчитать напряжение на выходе LM335, после чего останется только выставить это напряжение в качестве задающего на входе сравнивающего устройства (компаратора).

Еще один повод для использования LM335 в своей конструкции это небольшая цена. В интернет магазине его можно купить по цене около 1 доллара. Наверно, доставка обойдется дороже. После всех этих теоретических рассуждений можно перейти к разработке электрической схемы терморегулятора. В данном случае для погреба.

Принципиальная схема терморегулятора для погреба

Чтобы сконструировать терморегулятор для погреба на базе аналогового термодатчика LM335 не надо изобретать ничего нового. Достаточно обратиться к технической документации (Data Sheet) на этот компонент. Даташит содержит все способы применения датчика, в том числе и собственно терморегулятор.

Но эту схему можно рассматривать как функциональную, по которой можно изучить принцип работы. Практически придется дополнить ее выходным устройством, позволяющим включать нагреватель заданной мощности и, естественно, блоком питания и, возможно, индикаторами работы. Об этих узлах будет рассказано несколько позже, а пока посмотрим, что же предлагает фирменная документация, она же даташит. Схема, как она есть, показана на рисунке 3.

Рисунок 3. Схема подключения датчика LM335

Как работает компаратор

Основой предлагаемой схемы является компаратор LM311, он же 211 или 111. Как и все компараторы, 311-й имеет два входа и выход. Один из входов (2) является прямым и обозначен знаком +. Другой вход – инверсный (3) обозначен знаком «минус». Выходом компаратора является вывод 7.

Логика работы компаратора достаточно проста. Когда напряжение на прямом входе (2) больше, чем на инверсном (3), на выходе компаратора устанавливается высокий уровень. Транзистор открывается и подключает нагрузку. На рисунке 1 это сразу нагреватель, но ведь это функциональная схема. К прямому входу подключен потенциометр, задающий порог срабатывания компаратора, т.е. уставку температуры.

Когда напряжение на инверсном входе больше, чем на прямом, на выходе компаратора установится низкий уровень. К инверсному входу подключен термодатчик LM335, поэтому при повышении температуры (нагреватель уже включен) будет повышаться напряжение на инверсном входе.

Когда напряжение датчика достигнет порога срабатывания, установленного потенциометром, компаратор переключится в низкий уровень, транзистор закроется и отключит нагреватель. Далее весь цикл повторится.

Осталось совсем ничего, – на базе рассмотренной функциональной схемы разработать практическую схему, по возможности простую и доступную для повторения начинающими радиолюбителями. Возможный вариант практической схемы показан на рисунке 4.

Несколько пояснений к принципиальной схеме

Нетрудно видеть, что базовая схема немного изменилась. Прежде всего, вместо нагревателя транзистор будет включать реле, а что будет включать реле об этом чуть позже. Еще появился электролитический конденсатор C1, назначение которого сглаживание пульсаций напряжения на стабилитроне 4568. Но расскажем о назначении деталей чуть подробней.

Питание термодатчика и делителя напряжения уставки температуры R2, R3, R4 стабилизировано параметрическим стабилизатором R1, 1N4568, C1 с напряжением стабилизации 6,4В. Даже если питание всего устройства будет производиться от стабилизированного источника, дополнительный стабилизатор не помешает.

Такое решение позволяет питать все устройство от источника, напряжение которого можно выбрать в зависимости от напряжения катушки реле, имеющегося в наличии. Скорее всего, это будет 12 или 24В. Источник питания может быть даже нестабилизированным, просто диодный мост с конденсатором. Но лучше все-таки не поскупиться и поставить в блок питания интегральный стабилизатор 7812, который обеспечит еще и защиту от КЗ.

Если уж разговор зашел про реле, что можно в данном случае применить? Прежде всего, это современные малогабаритные реле, наподобие тех, что применяются в стиральных машинах. Внешний вид реле показан на рисунке 5.

Рисунок 5. Малогобаритное реле

При всей миниатюрности такие реле могут коммутировать ток до 10А, что позволяет коммутировать нагрузку до 2КВт. Это если на все 10А, но так делать не надо. Самое большее, что можно включить таким реле это нагреватель мощностью не более 1КВт, ведь должен же быть хоть какой-то «запас прочности»!

Совсем хорошо, если реле своими контактами будет включать магнитный пускатель серии ПМЕ, а уж он пусть включает нагреватель. Это один из самых надежных вариантов включения нагрузки. Другие варианты подключения описаны в статье «Как подключить нагрузку к блоку управления на микросхемах». Но практика показывает, что вариант с магнитным пускателем, пожалуй, самый простой и надежный. Возможная реализация такого варианта показана на рисунке 6.

Электропитание терморегулятора

Блок питания устройства нестабилизированный, а поскольку сам терморегулятор (одна микросхема и один транзистор) практически никакой мощности не потребляет, то в качестве источника питания вполне подойдет любой сетевой адаптер китайского производства.

Читать еще:  Электропанели для обогрева дома

Если сделать блок питания, как показано на схеме, то вполне подойдет небольшой силовой трансформатор от кассетного магнитофона калькулятора или чего-то другого. Главное, чтобы напряжение на вторичной обмотке было не свыше 12..14В. При меньшем напряжении не будет срабатывать реле, а при большем оно просто может сгореть.

Если выходное напряжения трансформатора находится в пределах 17…19В, то тут без стабилизатора не обойтись. Это не должно пугать, ведь современные интегральные стабилизаторы имеют всего 3 вывода, запаять их не так и сложно.

Включение нагрузки

Открытый транзистор VT1 включает реле K1, которое своим контактом K1.1 включает магнитный пускатель K2. Контакты магнитного пускателя K2.1 и K2.2 подключают к сети нагреватель. Следует отметить, что нагреватель включается сразу двумя контактами. Такое решение гарантирует, что при отключенном пускателе на нагрузке не останется фаза, если, конечно все исправно.

Поскольку погреб помещение влажное, иногда очень сырое, в плане электробезопасности очень опасное, то подключение всего устройства лучше всего осуществить с применением УЗО по всем требованиям к современной проводке. О правилах устройства электрической проводки в подвале можно почитать в этой статье.

Каким должен быть нагреватель

Схем терморегуляторов для погреба опубликовано немало. Когда-то их печатал журнал «Моделист-коструктор» и другие печатные издания, а теперь все это изобилие перекочевало в интернет. В этих статьях даются рекомендации, каким же должен быть нагреватель.

Кто-то предлагает обычные стоваттные лампы накаливания, трубчатые нагреватели марки ТЭН, масляные радиаторы (можно даже с неисправным биметаллическим регулятором). Также предлагается использовать бытовые обогреватели с встроенным вентилятором. Главное, чтобы не было прямого доступа к токоведущим частям. Поэтому старые электроплитки с открытой спиралью и самодельные нагреватели типа «козёл» применять ни в коем случае нельзя.

Сначала проверьте монтаж

Если устройство собрано без ошибок из исправных деталей, то особой наладки не требуется. Но в любом случае перед первым включением обязательно проверить качество монтажа: нет ли непропаек или наоборот замкнутых дорожек на печатной плате. И проделывать эти действия надо не забывать, просто взять себе за правило. Особенно это относится к конструкциям, подключаемым к электрической сети.

Настройка терморегулятора

Если первое включение конструкции произошло без дыма и взрывов, то единственное, что надо сделать, это выставить опорное напряжение на прямом входе компаратора (вывод 2), согласно желаемой температуре. Для этого необходимо произвести несколько расчетов.

Предположим, что температура в погребе должна поддерживаться на уровне +2 градуса по Цельсию. Тогда сначала переводим ее в градусы Кельвина, затем полученный результат умножаем на 0,010В в результате получается опорное напряжение, оно же уставка температуры.

(273,15 + 2) * 0,010 = 2,7515(В)

Если предполагается, что терморегулятор должен поддерживать температуру, например, +4 градуса, то получится следующий результат: (273,15 + 4) * 0,010 = 2,7715(В)

Обогрев погреба термостат

Приборы для измерения, регулирования и автоматизации

+7( 913 ) 461-24-58 , + 7 (383) 333-69-11, +7 (383) 306-58-96 E-mail: lionica2000@mail.ru

« О применении термостатов в погребах, овощехранилищах, омшаниках »

В статье приведены рекомендации по применению терморегуляторов и термостатов, поставляемых нашим предприятием, в погребах, овощехранилищах, термоконтейнерах (балконных погребках) для защиты сохраняемых овощей от переохлаждения, в омшаниках для содержания пчел.

Термостаты рассчитаны на длительную работу (осенью включил, весной – выключил), и практически не потребляют э/энергию в дежурном режиме. Включаются только тогда, когда температура в объеме опустится ниже заданной, обычно – 2 – 4 °С . Питаются от сети 220В.

Термостаты состоят из терморегулятора и присоединенного к нему посредством проводников нагревателя. Состав конкретного комплекта выбирается при заказе.

ТРо-02.С – выносной датчик температуры, диапазон регулирования температуры от 0 до +10°С, мощность подключаемого нагревателя от 5 до 500 Вт, выходное устройство – бесконтактное.

ТРо-02.Р – выносной датчик температуры, диапазон регулирования температуры от 0 до +10°С, максимальная мощность подключаемого нагревателя – 1 кВт, выходное устройство – реле.

ТРо-02.М – выносной датчик температуры, диапазон регулирования температуры от 0 до +10°С, максимальная мощность подключаемого нагревателя – 3,5 кВт, выходное устройство – реле.

Измеритель-регулятор температуры СТЕ-102 – цифровой индикатор для отображения установленной и текущей температур, выносной 2-х м датчик (возможно самостоятельно или по заказу увеличить длину до 50 м), диапазон регулирования температуры от -50 до +70°С, мощность подключаемого нагревателя не более 1 кВт.

Измеритель-регулятор температуры Ратар-02М.ТС – цифровой индикатор для отображения установленной и текущей температур, выносной датчик, диапазон регулирования температуры от -50 до +150°С, мощность подключаемого нагревателя до 3-х кВт.

Для термостатов подойдут и другие терморегуляторы, представленные на сайте компании.

Тепловентилятор 250 Вт (ТЭН 250 Вт и вентилятор в виде модуля).

Тепловентилятор 500 Вт (два ТЭНа по 250 Вт и вентилятор в виде модуля).

Указания мер безопасности

Внимание! Для питания термостата используется напряжение, опасное для жизни человека!

Все подключения, а также техническое обслуживание и ремонт необходимо осуществлять при отключенной сети.

Установка, подключение, регулировка и эксплуатация прибора должны производиться только квалифицированными специалистами.

При эксплуатации и техническом обслуживании прибора необходимо соблюдать «Правила технической эксплуатации электроустановок потребителем» и «Правила техники безопасности при эксплуатации электроустановок».

Надежно присоедините нагреватель к терморегулятору (через клеммную колодку), тщательно заизолируйте места соединений.

Обязательно закройте нагреватель прочной металлической решеткой, заземлите ее. Провода закрепите на стенах, провод на полу закройте желобом или поместите в трубу.

Перед тем, как войти в помещение, отключайте терморегулятор от сети!

Помните, что влажный погреб представляет собой помещение повышенной опасности!

В погребе, овощехранилище, омшанике температура распределена неравномерно – в какой-то зоне теплее, в какой-то холоднее. Особенно сильно она может различаться по высоте. Любой же терморегулятор контролирует температуру вблизи датчика. По мере удаления от него ошибка будет возрастать и может превысить допустимое значение. Поэтому датчик терморегулятора следует размещать непосредственно возле продуктов или в наиболее «ответственной» зоне в 3-5 см от пола.

Не стоит размещать датчик близко от нагревателя, иначе у Вас получится небольшая зона термостатирования, не охватывающая всю полезную площадь. В случае слишком большого удаления датчика от нагревателя, или отсутствия свободного воздушного пространства между ними возможна большая ошибка перерегулирования.

Оптимальное расстояние между нагревателем и датчиком должно быть примерно в 1,5 – 2 раза больше, чем между датчиком и ближайшей стеной.

Не следует использовать в погребе нагреватель большой мощности во избежание ошибки перерегулирования, тем более, если термостат используется для «подстраховки» на случай длительных морозов. Обычно достаточно мощности 250 Вт.

Термостат с ТЭНом (ТЭНами) имеет смысл использовать в небольших погребах площадью 2-6 кв.м. ТЭН поместите в середину погреба или ближе к наиболее «ответственной» зоне в 3-5 см от пола. В случае использования 2-х и более ТЭНов распределите их равномерно по площади погреба.

Существенно улучшить равномерность распределения температуры в объеме позволяет тепловентилятор. Его можно использовать в погребах площадью до 10 кв.м и более. Тепловентилятор установите на полу у стены (воздушный поток должен быть направлен к противоположной стене), закрепите шурупами.

Тепловентилятор можно использовать только в сухом помещении (влажность не более 80%).

В омшаниках лучше не использовать тепловентилятор из-за некоторого уровня шума.

Хранить овощи зимой можно с успехом и незначительными затратами на балконе или лоджии в термоконтейнере (балконном погребке).

В продаже появились такие термоконтейнеры, представляющие собой термостатированный ящик, на дне которого расположен нагреватель, отделенный от полезного объема деревянной решеткой. Терморегулятор настроен на фиксированную температуру, обычно 2 – 4 град.

Сделать подобный «погребок» и даже с лучшими характеристиками под размеры своего балкона довольно просто. К тому же можно сделать его разборным на лето. Объема контейнера в 400-500 литров обычно достаточно для обеспечения потребностей средней семьи овощами.

Наиболее подходящим материалом для ящика является экструдированный пенополистирол XPS – лучший утеплитель сегодня, прочный, долговечный, недорогой. хорошо режется обычной ножовкой по дереву. Его можно приобрести в магазине строительных материалов.

Листы пенополистирола толщиной 50 мм соедините саморезами длиной 100 -120 мм, стыки «запеньте» строительной пеной. К крышке по периметру приклейте поролон для утепления. Решетку подходящих размеров можно изготовить из деревянных брусков, или использовать готовую.

В качестве нагревателя лучше использовать нагреватель распределенного типа – теплопленку, термопластины, греющий провод. Из поставляемых нами нагревателей можно использовать два ТЭНа мощностью 250 Вт, соединенных последовательно, разместив их между двумя металлическими пластинами. Эквивалентная мощность составит 125 Вт, а пластины обеспечат равномерность нагрева по площади.

Датчик терморегулятора закрепите в 3-5 см выше решетки.

При использовании в качестве нагревателя тепловентилятора, установите его на дне ящика прикрепив к одной из стенок саморезами. Поток воздуха должен быть направлен к противоположной стенке. Сверху установите решетку, можно наклонно для экономии полезного объема. Датчик закрепите на противоположной от тепловентилятора стенке в 3-5 см от решетки.

Простой «погребок» на 300-500 литров можно изготовить, используя в качестве нагревателей 4 лампы накаливания (электрические лампочки) мощностью 75 – 95 Вт, размещенные в нижних углах ящика и соединенные попарно последовательно, см. рис.

Суммарная мощность при таком включении составит 100-130 Вт (из-за нелинейности ламп), срок службы же ламп увеличится многократно. Если в качестве терморегулятора используется ТРо-02.С, то лампы надо включать только так, иначе прибор может выйти из строя при перегорании нити накала. Лампы можно поместить в металлические или стеклянные банки.

Читать еще:  Сетка под теплые полы водяные

Улучшить равномерность распределения температуры можно используя конструкцию погребка «коробка в коробке». Суть ее заключается в том, что в основной ящик вставляется другой так, чтобы по всему периметру оставался воздушный зазор около 3 см для конвекции теплого воздуха, поступающего от нагревателя, расположенного на дне основного ящика. Дополнительный ящик можно изготовить из фанеры, пластика и т.п. В боковых стенках просверлите отверстия общей площадью около 20% от площади стенок для циркуляции воздуха в обьеме. В такой погребок можно просто засыпать овощи, например, картофель, а не ставить в сетках.

Терморегулятор лучше расположить так, чтобы контролировать температуру в контейнере в случае использования измерителя-регулятора или просто работу терморегулятора по периодическому загоранию светодиода, можно в комнате.

Исходя из опыта эксплуатации подобных термоконтейнеров, для их обогрева достаточно мощности нагревателя всего 50-100 Вт, т.е. потребленная за весь период э/энергия будет незначительной по сравнению с общим энергопотреблением.

Более подробно ознакомиться с терморегуляторами и термостатами и заказать их можно на сайте компании .

ООО «Лионика» г.Новосибирск, ул. Русская, 39, оф. 517.

Россия, г. Новосибирск, ул. Русская, 39, оф. 517.

Терморегулятор для погреба своими руками

Один мой знакомый приятель приобрел гараж с погребом и решил сделать так, чтобы картофель и другие овощи в погребе не промерзали зимой.

Он попросил помочь ему в изготовлении терморегулятора.

Схема простая, доступная для сборки даже начинающим радиолюбителям.

Слепое копирование чьего-то, хотя и вполне работоспособного, устройства — не по мне. Да и ряд соображений побудил заняться модернизацией базового терморегулятора.

Прежде всего, меня не устраивало, что электропитание исходного варианта осуществлялось по так называемой бестрансформаторной схеме, где узлы и элементы — под фазовым, опасным для жизни напряжением. Ведь в погреб не исключено просачивание воды. Да и хозяин хранилища овощей, скажем, в распутицу может запросто промочить ноги. Что если он на мгновение коснется работающего терморегулятора? Это помогло четче сформулировать основное требование к терморегулятору: надежная развязка конструкции от сетевого напряжения, например, при помощи разделительного или понижающего трансформатора и исполнительного реле.

Не устраивала меня и маломощность устройства-прототипа с теплоизлучающей нагрузкой в виде 100-ваттной лампы накаливания. Конечно же, в модернизированной конструкции должен работать нагреватель мощностью не менее 1,5 кВт в сочетании с вентилятором. В случае необходимости его можно использовать для быстрой просушки погреба-овощехранилища.

Но тогда тиристоры устаревшей серии КУ202 и диоды Д245, на которых собрана схема-прототип, должны работать на пределе своих возможностей и перегреваться. Значит, требуется установить их на радиаторы, организовать принудительное охлаждение, электроизолировать друг от друга и от корпуса устройства или использовать более мощные и, как правило, более дорогие и дефицитные аналоги…

Принципиальная электрическая схема

Схема терморегулятора-прототипа (вверху)

и её модернизированный вариант (внизу)

И тут мне подвернулся под руку старый магнитный пускатель марки ПМЕ-074. Это помогло разрешить все проблемы. К тому же удалось при модификации принципиальной электрической схемы терморегулятора ограничиться использованием одного датчика температуры вместо прежних двух.

Тем, кто заинтересуется моей доработкой конструкции, отлично зарекомендовавшей себя в деле, нелишне знать и другие подробности. В частности, что на резисторах R1— RЗ собран делитель 9-вольтного, гальванически не связанного с бытовой электросетью, стабилизированного напряжения питания (с помощью стабилитрона VD1 типа Д814Б). В нижнее плечо его включен 10-килоомный терморезистор КМТ-12, легко заменяемый на ММТ-1, ММТ-9, ММТ-12 и им подобные аналоги. В верхнем плече делителя — два резистора: переменный Р1 (сопротивлением 1,5—2,2 кОм, тип — СПО-0,5 или СПЗ-4а с линейной характеристикой, ручка регулировки вынесена на лицевую панель с градуировкой «коррекция») и подстроечный R2 (15—47 кОм, СПЗ-16, «грубая установка»).

Печатная плата терморегулятора

Ярко выраженная зависимость сопротивления терморезистора от температуры позволяет использовать его в качестве датчика, изменяющего напряжение на соединенных входах 1 и 2 логического элемента DD1.1 микросхемы К561ЛА7. Ручками регулировки резисторов R1 и R2 выставляется порог (температура) срабатывания электронной логики. Конденсатором С1 устраняется «дребезг» (самовозбуждение) микросхемы DD1 в момент переключения. Благодаря резисторам R5 и R6 выход «цепочки» логических элементов гальванически увязывается с транзисторным ключом УТ1 (КТ972), нагрузкой которого является реле К1. Оно, в свою очередь, запускает магнитный пускатель К2 типа ПМЕ-074, включающий нагрузку — бытовой нагреватель со встроенным вентилятором общей мощностью 1,5 кВт и более.

Правда, для подключения терморегулятора к бытовой сети необходим понижающий трансформатор. Как подсказывает опыт, приемлем любой малогабаритный «силовичок» (например, от переносного магнитофона, калькулятора). Можно использовать и недорогой сетевой адаптер мощностью 9—10 Вт. Главное, подать на диодный мост терморегулятора требуемые 12 В. Меньшее напряжение может вызвать нестабильность срабатывания реле К1, а большее грозит перегревом, а то и перегоранием его обмоток.

Электронная часть устройства, за исключением датчика, смонтирована на печатной плате из односторонне фольгированного стеклотекстолита размерами 70x70x2 мм и вместе с магнитным пускателем К2 размещена в пластмассовом корпусе подходящих размеров. Терморезистор-датчик сделан выносным и для большей чувствительности прикреплен к небольшому алюминиевому радиатору.

Терморегулятор, собранный без ошибок и из заведомо исправных деталей, начинает работать сразу по включению в электросеть. Настройка же состоит в подборе сопротивления резистора 144, обеспечивающего правильный режим эксплуатации стабилитрона (сверяется по справочнику). Например, при использовании Д814Б в качестве VD1 номинал этого резистора ориентировочно определяется из расчета 100 Ом на каждый 1 В разницы между нестабили-зированным и стабилизированным напряжениями питания. То есть сопротивление 144 для конкретных условий, задаваемых принципиальной электрической схемой, должно составлять (12—9) х 100 Ом = 300 Ом.

Рекомендуется только что смонтированное, подключенное к источнику электроэнергии и еще не помещенное в корпус устройство «погонять» в течение часа-двух. Если выяснится, что напряжение стабилизации «гуляет» или стабилитрон сильно греется, то необходимо подобрать номинал R4.

Далее, с помощью резисторов R1 и R2 задать температуру, которая должна поддерживаться в погребе-овоще-хранилище. Для этого следует, установив их движки в среднее положение и поместив терморезистор в среду с требуемой температурой, при медленном вращении ручки «коррекция» найти такой угол поворота ротора R2, при котором происходит срабатывание реле К1. Затем, охлаждая или нагревая среду, где пребывает датчик, зафиксировать температуру срабатывания термореле при крайних положениях движка резистора Хорошо ручку этого «переменника» на лицевой панели устройства оснастить указателем, а рядом наклеить шкалу из ватмана.

Автор: В.Савельев, г. Радужный, Владимирская обл.

Выбор обогревателя для отопления погреба с терморегулятором: отопление водными системами, печкой

Погреб или подвал есть почти что во всех частных домах. В нем отлично хранятся припасы на зиму. Помогает в этом специальный прибор для погреба – терморегулятор.

Выбор обогревателя с терморегулятором для погреба

Виды отопления

Системы обогрева, подходящие для установки в погребах:

  • водяная предполагает монтаж радиаторов, электрического, газового котла;
  • печная (небольшая печь или железная «буржуйка»).

Отопление водой

Для обустройства водяной системы отопления необходим котел. Он бывает газовым, электрическим. Самая простая система с термостатом состоит из:

  • котла;
  • бака расширительного;
  • подающей и обратной труб;
  • радиатора.

Печное отопление

В погребе устанавливается «буржуйка». Она экономична, проста в эксплуатации, не требует много топлива. Это главное достоинство конструкции.

Железная печь не занимает много места, а тепла от нее достаточно, чтобы обогревать небольшой подвал в частном доме. Для улучшения эффективности работы требуется дополнительное крепление дымохода.

Буржуйка

Теплоизоляция в подвале

Для сохранения тепла зимой и предотвращение промерзания стен во время сильных морозов стоит провести теплоизоляцию помещения. Правильно выбранные материалы позволяют поддерживать в помещении температуру +7…+8 ᵒС без отопления.

При качественной теплоизоляции влажность сохраняется на минимуме, а площадь не страдает. При этом удобно осматривать погреб, вовремя убирать недостатки.

Основной минус – необходимость защиты слоя теплоизоляции, потому что кирпич способствует потере тепла.

Расчет отопления

Для выбора оборудования для обогрева помещения требуется правильный расчет площади. Если она больше 500 кв. м., мощность обогревательного прибора должна быть не менее 40 кВт. Когда нужно протопить только подвал, хватит и 25 кВт

При желании оборудовать печное отопление стоит выбрать тип обогревателя:

  1. Кирпичная печь. Самая простая альтернатива, потому что мощность рассчитывать не надо. Топка и дымоход должны быть собраны без ошибок, чтобы дым не попадал в помещение, а теплоотдача была максимальной.
  2. Печка длительного горения. Отапливает до 200 кв. м площади. Ее мощность высчитывается так же, как у котельного оборудования.
  3. «Буржуйка» (небольшая железная конструкция). Отапливает небольшое помещение, не сохраняет тепло.

Печь нужно располагать внизу дома. Если погреба нет, то оборудование устанавливается на нижнем этаже.

Когда печь из кирпича уже работает, заслонку можно закрывать только после прогорания топлива, остаются угли. Так удается сэкономить топливо. Если пренебрегать этим правилом, то все тепло уйдет в дымоход.

Электрический котел

Правильное устройство погреба не требует отопления. Тепло аккумулируется поверхностными слоями грунта. Эффективность процесса зависит от нескольких факторов:

  • присутствие/отсутствие вентиляции;
  • уровень грунтовых вод;
  • качество материалов, из которых сделана гидроизоляция в погребе.

На глубине около 3-4 м колебания температуры в среднем за год составляют примерно 5-10 градусов. По этой причине глубина погреба играет первостепенную роль для поддержания стабильного режима внутри этого помещения. Это особенно актуально для подвалов, над которыми нет построек. Обогрев подвала под жилым зданием – несложная задача, ведь удается вовлекать и контролировать альтернативные методы отопления.

Читать еще:  Тепловые системы без обогрева с ТЭНом

Естественный и электрический обогрев

Обогрев подвала проводится двумя способами:

  • естественный;
  • с помощью электричества.

Безопасный естественный метод. Он заключается в аккумулятивном эффекте грунта.

Электрический обогрев для поддержания необходимой температуры в подвале без достаточного утепления будет требовать увеличения энергетических затрат. Для погребов, расположенных на приусадебных участках, где зимой нет электричества, этот метод обогрева недоступен. Он идеален в городских условиях. Но подземное хранилище все равно необходимо утеплять.

Укладка теплого пола

В подвале не всегда имеются плиты перекрытия, стяжка из бетона, и обустройство отопления организуется прямо на почве, иногда на глине.

Монтаж пола на грунте без дополнительной стяжки из бетона угрожает проседанием. Вероятность сохраняется, потому что слои отопления теплого пола весят много, провоцируя сдвиги даже при утрамбованном основании из глины и земли.

Теплый пол

Обустройство отапливаемого пола на грунт в подвале под домом включает такие этапы:

  1. На почве формируется слой насыпного грунта 15 см в толщину, его тщательно трамбуют. Для насыпи требуется глина и песок.
  2. Засыпание поверхности щебенкой (толщина 10 см).
  3. Щебень проливается жидким раствором из песка, цемента с водой, замешивается до текучей консистенции.
  4. На щебень кладут пенополистирол (толщина 7 см).
  5. Укладывание гидроизоляции.
  6. Закладка труб или матов полов. Инфракрасная система при организации подвала не применяется. Сверху заливают бетонную стяжку с армированием.
  7. Для покрытия пола лучше всего подойдет плитка.

Электроотопление

Применение электрических приборов для обогрева подвала – бюджетный способ. Для нормальной работы приборов требуется качественная укладка проводки, правильный расчет суммарной мощности.

Можно применять различное оборудование, главное, разобраться в его видах и способах эксплуатации.

Конвекторные обогреватели

Для обогрева больших погребов, подвалов частных домов предназначены конвекторные модели. Они помогают справиться с холодом даже при сильных морозах. Конвекторы крепятся на полу, стенах, потолке.

Основное достоинство конвекторов – быстрый обогрев, простая установка, бесшумная работа, возможность прогревания большой площади.

Из минусов – большой расход электроэнергии.

Обогреватели на масле

Обогреватели, функционирующие на масле – конкуренты конверторных моделей по популярности. Для них не требуется электричество, но использовать их не так легко, как кажется. Сначала происходит нагрев масла в радиаторе, потом оно отдает тепло комнате. Это долгий процесс. Масляные модели дешевле конвекторных, они тяжелее, бесшумные, легко монтируются.

Инфракрасные обогреватели

Инфракрасные виды греют только пространство перед собой. Для отопления погреба нужно много времени, поэтому затраты электричества увеличиваются. Модели на ИК-излучении работают без шума, безопасные и надежные, энергосберегающие, сохраняют микроклимат.

ИК-устройства

Выбор обогрева

Отопление погреба – нелегкая задача. Когда нужно отопление подвала, предназначенного для сезонного проживания, подойдет монтаж обыкновенного обогревателя.

Для полноценной жилой комнаты нужен более эффективный способ с применением печи, котла. Для размещения газового оборудования понадобится специальное помещение. Работу такой системы заранее нужно обговорить и согласовать с соответствующими службами.

Если появляется вопрос о проблеме обогрева в зимнее время, нужно учесть, в каком климате находится помещение, глубину котлована, использованную гидроизоляцию, теплоизоляцию.

Когда нужно обогреть небольшое помещение для отдыха, обогреватели должны функционировать быстро. В этом случае подходит котел, печь, конвектор.

Существуют монолитные подвалы с встроенным утеплением. Они создаются для хранения припасов, в них даже зимой на глубине овощи остаются свежими, не гниют и не замерзают.

Терморегулятор для погреба

Погреб выполняет простую функцию – хранение продуктовых запасов. Лучшая сохранность фруктов и овощей, в свежем либо законсервированном виде, достигается лишь при правильном микроклимате. Для создания необходимого температурного режима используют нагревательные приборы; для поддержания его на требуемом уровне – терморегулятор для погреба.

Особенности использования терморегулятора в погребе

Для погреба и жилых помещений используются разное оборудование и режимы обогрева. Необходимо учитывать некоторые особенности:

  1. Распределение температуры. В подземных хранилищах она может значительно отличаться в зависимости от высоты, даже в пределах небольшого пространства.
  2. Объем помещения. Погреб обычно небольшой, это нужно учитывать при расположении нагревателя и датчиков.
  3. Влажность. Высокий показатель может повлиять на работу некоторых моделей терморегулятора.
  4. Мощность. Для обогрева небольшой площади не стоит использовать слишком мощный нагреватель – это неэкономно.

Эти параметры влияют на выбор самого нагревателя, потом и терморегулятора для него. Несмотря на технические различия, принцип работы устройств остается неизменным.

Принцип работы терморегулятора

Суть работы прибора – контроль нагревательного элемента. Устанавливается контрольное значение температуры. Если воздух в помещении холоднее, чем требуется, датчик это улавливает, и прибор включает отопление. При достижении заданного уровня – выключает.

На заметку. Большинство современных терморегуляторов электронное. Для погреба подойдет и механический термостат, но за последние годы стали доступны электронные модели, предлагающие больший функционал.

Терморегуляторы с датчиком температуры воздуха для погреба требуют не только правильного выбора устройства, но и его размещения.

Как лучше расположить оборудование

При установке датчика следует отталкиваться от объема помещения и выбранного места для хранения запасов:

  1. Рядом с полками продуктов. Главная задача – контролировать температуру именно в этой области.
  2. При равномерном распределении овощей и консервированных продуктов – в нескольких сантиметрах от пола.
  3. На некотором удалении от нагревателя. Навредит как слишком близкая установка, так и большое расстояние. В первом случае контролироваться будет чересчур малая площадь, во втором – возможны ошибки регулирования.

Если используются ТЭНы в просторных овощехранилищах, нужно распределить их равномерно. Для помещений площадью до 5-6 кв.м достаточно одного, расположенного в центре.

Выбор терморегулятора

Подбирать модель регулятора стоит после измерения площади погреба и уровня влажности. Различаются приборы по следующим характеристикам:

  • диапазон считываемых температур;
  • отображение информации – дисплей либо набор индикаторов;
  • защищенность от внешних воздействий – влаги и частиц пыли;
  • максимальная дальность расположения датчика.

Если высокая технологичность не нужна, а важен только функционал, можно не покупать прибор, а сделать его самому.

Самодельный терморегулятор

При изготовлении терморегулятора для погреба своими руками можно воспользоваться биметаллическим датчиком. Однако механическое прерывание работы нагревателя менее надежно, чем электронная коммутация. Собрать терморегулятор можно на обычной микросхеме.

В зависимости от фантазии создателя и объема задач будущего терморегулятора, потребуется разный набор компонентов. Однако можно выделить несколько основных.

Материалы для создания терморегулятора

При конструировании рабочего устройства обычно используют следующие элементы:

  • стабилитрон – диод, односторонне пропускающий ток;
  • термический резистор – сопротивление меняется в зависимости от колебаний температуры;
  • переменный резистор – регулирует температуру.

Настройка прибора на температуру срабатывания вручную – сложный этап. Облегчить его можно покупкой готового сенсора. У такого датчика температуры воздуха для погреба цифровой сигнал будет подаваться на микроконтроллер.

Контроль температуры в помещении

Для поддержания оптимальной температуры при помощи самодельного или заводского прибора можно выбрать несколько способов:

  1. Включение либо отключение нагревателя. Способ простой и эффективный, но подходит не всегда. Из-за ошибок в регулировке могут возникнуть колебания температуры, опасные для хранящихся запасов.
  2. Контроль режима работы. Меняется либо степень нагрева элемента, либо скорость работы кулера (при использовании тепловентилятора).

Обычно используют первый метод – устройства с подобным принципом работы дешевле и надежнее.

Схема терморегулятора

Полностью понять принцип работы устройства либо собрать его самому поможет электрическая схема. Примеры можно найти в технических руководствах простейших терморегуляторов, например, LM335. Несмотря на то, что прибор был разработан довольно давно, схемы остаются рабочими. Достаточно взять их за основу и дополнять необходимыми узлами.

Принципиальная электрическая схема – это базовая схема, скорее всего, при самостоятельном конструировании к ней добавятся другие элементы, например, устройства для индикации работы. При понимании работы узлов и достаточном знании радиомеханики можно модернизировать систему, например, установить термореле для включения нагревателя.

Печатная плата терморегулятора

Собрать прибор можно на печатной плате. Материал – односторонний стеклотекстолит. Плата помещается в любой подходящий корпус, терморезистор выносится наружу. Калибровку срабатывания реле производят при помощи сопротивлений R2 и R1, выбирая угол вращением ручки.

Работа компаратора

На схеме терморегулятора можно заметить ключевой элемент LM311 – компаратор, имеющий прямой и инверсный входы, а также два выхода. Он действует следующим образом:

  1. Напряжение на прямом входе выше – на выходе устанавливается высокий уровень, транзистор или реле включает нагревательный элемент.
  2. Напряжение выше на инверсном – устанавливается низкий уровень, нагрев отключается.

Термодатчик подключается к инверсному входу, поэтому напряжение на нем будет повышаться по мере роста температуры.

Как соединить устройство с нагревателем

Подключать терморегулятор к нагревательному прибору нужно по схеме, указанной в технической документации. Обычно сложностей возникнуть не должно, так как учитываются все возможные варианты.

Если прибор самодельный, нужно лишний раз убедиться, что конструкция надежная и выполнена правильно. Элементы должны быть тщательно защищены от воздействия влаги, которой не избежать в подвале. Особое внимание стоит уделить качеству пайки и отсутствию замыкания дорожек.

Правильный выбор или сборка терморегулятора позволит забыть о проблеме переохлаждения или слишком высокой температуры в погребе. Достаточно настроить контрольные значения и следить за состоянием устройства, все остальное сделает прибор.

Видео

Ссылка на основную публикацию
Adblock
detector